Mean curvature flow
نویسندگان
چکیده
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur under the flow, what the flow looks like near these singularities, and what this implies for the structure of the singular set. At the end, we will briefly discuss how one may be able to use the flow in low-dimensional topology.
منابع مشابه
Mean Curvature Flow of Higher Codimension in Hyperbolic Spaces
where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F (x, t). We call F : M × [0, T ) → F(c) the mean curvature flow with initial value F . The mean curvature flow was proposed by Mullins [17] to describe the formation of grain boundaries in annealing metals. In [3], Brakke introduced the motion of a submanifold by its mean curvature in arbitrary codimension and constructed a genera...
متن کاملNo Mass Drop for Mean Curvature Flow of Mean Convex Hypersurfaces
Abstract. A possible evolution of a compact hypersurface in R by mean curvature past singularities is defined via the level set flow. In the case that the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equality. We obtain as a consequence that no mass drop can occur along such a flow. As a further ap...
متن کاملThe Mean Curvature Flow Smoothes Lipschitz Submanifolds
The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...
متن کاملBrian White - Mean Curvature Flow (math 258) Lecture Notes Notes by Otis Chodosh
1. Overview 2 1.1. Curve shortening flow 2 1.2. Flow of hypersurfaces 5 1.3. Mean convex surfaces 6 2. The maximum principle 7 3. Unparameterized mean curvature flow 8 3.1. Graphs 8 4. Short-time existence and smoothing 9 5. Long term behavior of mean curvature flow 9 6. Renormalized mean curvature flow 11 7. The level set approach to weak limits 13 8. Weak compactness of submanifolds 16 8.1. E...
متن کاملUniqueness and Pseudolocality Theorems of the Mean Curvature Flow
Mean curvature flow evolves isometrically immersed base Riemannian manifolds M in the direction of their mean curvature in an ambient manifold M̄ . We consider the classical solutions to the mean curvature flow. If the base manifold M is compact, the short time existence and uniqueness of the mean curvature flow are well-known. For complete noncompact isometrically immersed hypersurfaces M (unif...
متن کاملCurvature flows on four manifolds with boundary
Given a compact four dimensional smooth Riemannian manifold (M, g) with smooth boundary, we consider the evolution equation by Q-curvature in the interior keeping the T -curvature and the mean curvature to be zero and the evolution equation by T -curvature at the boundary with the condition that the Q-curvature and the mean curvature vanish. Using integral method, we prove global existence and ...
متن کامل